12 research outputs found

    The effect of bioresorbable vascular scaffold implantation on distal coronary endothelial function in dyslipidemic swine with and without diabetes

    Get PDF
    Background: We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM + HFD). Methods: Five DM + HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >. 5. mm proximal and distal to the scaffold and corresponding control segments of non-scaffolded coronary arteries, as well as segments of small arteries within the flow-territories of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Results: Conduit segments proximal and distal to the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p <. 0.01), with distal segments being most prominently affected (p <. 0.01). Endothelial dysfunction was only observed in DM + HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p <. 0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM + HFD swine, and did not appear to be either NO- or EDHF-mediated. Conclusions: Six months of BVS implantation in DM + HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients

    Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance

    Get PDF
    Background: Diabetes mellitus (DM) is associated with a range of microvascular complications including diabetic nephropathy (DN). Microvascular abnormalities in the kidneys are common histopathologic findings in DN, which represent one manifestation of ongoing systemic microvascular damage. Recently, sidestream dark-field (SDF) imaging has emerged as a noninvasive tool that enables one to visualize the microcirculation. In this study, we investigated whether changes in the systemic microvasculature induced by DM and an atherogenic diet correlated spatiotemporally with renal damage. Methods: Atherosclerotic lesion development was triggered in streptozotocin-induced DM pigs (140 mg/kg body weight) by administering an atherogenic diet for approximately 11 months. Fifteen months following induction of DM, microvascular morphology was visualized in control pigs (n = 7), non-diabetic pigs fed an atherogenic diet (ATH, n = 5), and DM pigs fed an atherogenic diet (DM+ATH, n = 5) using SDF imaging of oral mucosal tissue. Subsequently, kidneys were harvested from anethesized pigs and the expression levels of well-established markers for microvascular integrity, such as Angiopoietin-1 (Angpt1) and Angiopoietin-2 (Angpt2) were determined immunohistochemically, while endothelial cell (EC) abundance was determined by immunostaining for von Willebrand factor (vWF). Results: Our study revealed an increase in the capillary tortuosity index in DM+ATH pigs (2.31±0.17) as compared to the control groups (Controls 0.89±0.08 and ATH 1.55±0.11; p<0.05). Kidney biopsies showed marked glomerular lesions consisting of mesangial expansion and podocyte lesions. Furthermore, we observed a disturbed Angpt2/ Angpt1balance in the cortex of the kidney, as evidenced by increased expression of Angpt2 in DM+ATH pigs as compared to Control pigs (p<0.05). Conclusion: In the setting of DM, atherogenesis leads to the augmentation of mucosal capillary tortuosity, indicative of systemic microvascular damage. Concomitantly, a dysbalance in renal angiopoietins was correlated with the development of diabetic nephropathy. As such, our studies strongly suggest that defects in the systemic microvasculature mirror the accumulation of microvascular damage in the kidney

    OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold

    Get PDF
    AbstractBackgroundAlthough recent observations suggest a favorable initial healing process of the everolimus-eluting bioresorbable vascular scaffold (BVS), little is known regarding long-term healing response.ObjectivesThis study assessed the in vivo vascular healing response using optical coherence tomography (OCT) 5 years after elective first-in-man BVS implantation.MethodsOf the 14 living patients enrolled in the Thoraxcenter Rotterdam cohort of the ABSORB A study, 8 patients underwent invasive follow-up, including OCT, 5 years after implantation. Advanced OCT image analysis included luminal morphometry, assessment of the adluminal signal-rich layer separating the lumen from other plaque components, visual and quantitative tissue characterization, and assessment of side-branch ostia “jailed” at baseline.ResultsIn all patients, BVS struts were integrated in the vessel and were not discernible. Both minimum and mean luminal area increased from 2 to 5 years, whereas lumen eccentricity decreased over time. In most patients, plaques were covered by a signal-rich, low-attenuating layer. Minimum cap thickness over necrotic core was 155 ± 90 ÎŒm. One patient showed plaque progression and discontinuity of this layer. Side-branch ostia were preserved with tissue bridge thinning that had developed in the place of side-branch struts, creating a neo-carina.ConclusionsAt long-term BVS follow-up, we observed a favorable tissue response, with late luminal enlargement, side-branch patency, and development of a signal-rich, low-attenuating tissue layer that covered thrombogenic plaque components. The small size of the study and the observation of a different tissue response in 1 patient warrant judicious interpretation of our results and confirmation in larger studies

    Serial Coronary Imaging of Early Atherosclerosis Development in Fast-Food-Fed Diabetic and Nondiabetic Swine

    Get PDF
    Patients with diabetes mellitus (DM) are at increased risk for atherosclerosis-related events compared to non-DM (NDM) patients. With an expected worldwide epidemic of DM, early detection of anatomic and functional coronary atherosclerotic changes is gaining attention. To improve our understanding of early atherosclerosis development, we studied a swine model that gradually developed coronary atherosclerosis. Interestingly, optical coherence tomography, near-infrared spectroscopy (NIRS), vascular function, and histology demonstrated no differences between development of early atherosclerosis in fast-food-fed (FF) DM swine and that in FF-NDM swine. Coronary computed tomography angiography did not detect early atherosclerosis, but optical coherence tomography and near-infrared spectroscopy demonstrated coronary atherosclerosis development in FF-DM and FF-NDM swine

    Neoatherosclerosis development following bioresorbable vascular scaffold implantation in diabetic and non-diabetic swine

    Get PDF
    Background: DM remains a risk factor for poor outcome after stent-implantation, but little is known if and how DM affects the vascular response to BVS. Aim: The aim of our study was to examine coronary responses to bioresorbable vascular scaffolds (BVS) in swine with and without diabetes mellitus fed a ‘fast-food’ diet (FF-DM and FF-NDM, respectively) by sequential optical coherence tomography (OCT)-imaging and histology. Methods: Fifteen male swine were evaluated. Eight received streptozotocin-injection to induce DM. After 9 months (M), 32 single BVS were implanted in epicardial arteries with a stent to artery (S/A)-ratio of 1.1:1 under quantitative coronary angiography (QCA) and OCT guidance. Lumen, scaffold, neointimal coverage and composition were assessed by QCA, OCT and near-infrared spectroscopy (NIRS) pre- and/or post-procedure, at 3M and 6M. Additionally, polarization-sensitive (PS)-OCT was performed in 7 swine at 6M. After sacrifice at 3M and 6M, histology and polymer degradation analysis were performed. Results: Late lumen loss was high (~60%) within the first 3M after BVS-implantation (P0.20). Neointimal coverage was highly heterogeneous in all swine (DM vs. NDM P>0.05), with focal lipid accumulation, irregular collagen distribution and neointimal calcification. Likewise, polymer mass loss was low (~2% at 3M, ~5% at 6M;P>0.20) and not associated with DM or inflammation. Conclusion: Scaffold coverage showed signs of neo-atherosclerosis in all FF-DM and FF-NDM swine, scaffold polymer was preserved and the vascular response to BVS was not influenced by diabetes

    Optical coherence tomography imaging in acute myocardial infarction

    No full text
    Optical coherence tomography (OCT) is a high-resolution intravascular imaging modality able to visualize the micro-environment of the atheromatic plaque and assess intracoronary stents in great detail. As a result, OCT is a valuable research tool for examining the role of morphological characteristics of atheromatic plaque in the progression of coronary artery disease and plaque destabilization, which lead to the clinical manifestation of acute coronary syndromes. Several OCT studies have focused on expanding the current understanding of the pathomechanisms of acute myocardial infarction. Moreover, as OCT is being increasingly used in clinical practice, potential clinical applications of OCT in myocardial infarction are emerging. Despite the lack of established indications for OCT imaging in myocardial infarction thus far, OCT could be potentially of assistance in interventional guidance in several clinical scenarios such as culprit lesion identification, assessment of the underlying mechanisms of stent thrombosis, and guidance of local and systematic antithrombotic therapy. The current chapter summarizes the pathophysiological insights obtained by OCT imaging in acute myocardial infarction, and critically reviews potential areas of clinical application of this imaging modality in myocardial infarction

    The impact of Fourier-Domain optical coherence tomography catheter induced motion artefacts on quantitative measurements of a PLLA-based bioresorbable scaffold

    No full text
    Intracoronary Fourier-Domain optical coherence tomography (FD-OCT) enables imaging of the coronary artery within 2-4 seconds, a so far unparalleled speed. Despite such fast data acquisition, cardiac and respiratory motion can cause artefacts due to longitudinal displacement of the catheter within the artery. We studied the influence of longitudinal FD-OCT catheter displacement on serial global lumen and scaffold area measurements in coronary arteries of swine that received PLLA-based bioresorbable scaffolds. In 10 swine, 20 scaffolds (18 x 3.0 mm) were randomly implanted in two epicardial coronary arteries. Serial FD-OCT imaging was performed immediately after implantation (T1) and at 3 (T2) and 6 months (T3) follow-up. Two methods for the selection of OCT cross-sections were compared. Method A did not take into account longitudinal displacement of the FD-OCT catheter. Method B accounted for longitudinal displacement of the FD-OCT catheter. Fifty-one OCT pullbacks of 17 scaffolds were serially analyzed. The measured scaffold length differed between time points, up to one fourth of the total scaffold length, indicating the presence of longitudinal catheter displacement. Between method A and B, low error was demonstrated for mean area measurements. Correlations between measurements were high: R2 ranged from 0.91 to 0.99 for all mean area measurements at all time points. Considerable longitudinal displacement of the FD-OCT catheter was observed, diminishing the number of truly anatomically matching cross-sections in serial investigations. Global OCT dimensions such as mean lumen and scaffold area were not significantly affected by this displacement. Accurate co-registration of cross-sections, however, is mandatory when specific regions, e.g. jailed side branch ostia, are analyzed
    corecore